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Abstract  Flow in porous media has been a subject of active research for the last four to five decades. In this paper, a
simulation model developed using stochastic partial differential equations to describe hydrodynamic dispersion of a tracer in
a confined aquifer is presented with appropriate visualisations, Since the velocity of a tracer particie depends very much on
the pore structure of the medium, it can be described by the average Darcian velocity and a Wiener process in space and in
time accounting for uncerlainty in the pore structure. We can simulate random paths of tracer particles using this stochastic
process for the velocity and correlation functions can be used to control the behaviour. In this way, we can model the
hydrodynamic dispersion of a tracer without resorting to perturbation solutions in a porous medium. In addition, pore-scale
diffusion is modelled as a stochastic differential equation relating the instantaneous concentration gradient of the solute at a
specific location to the stochastic diffusive flux through a coefficient containing noise. This noise term is also characterised in
termis of & Wiener process in space and in time with its correlation functions. The total stochastic flux is the sum of the
flux due to the velocity and the flux due to pore-scale diffusion. Based on these concepts, a stochastic solute transport model
is developed incorporating the properties such as porosity and hydraulic conductivity either as dsterministic fanctions or as
random guantities from appropriate distributions if sufficient amount of data is available from the porows formation, The
stochastic transport model is solved numerically for {-dimensional, 2-dimensional and 3-dimensional cases.

1. INTROGDUCTION differential equations to be valid. One could argue that if
the variances of the processes involved are indeed small as
required by the perturbation solutions, then a completely
deterministic model could be used as a sufficient tool for

Flow in porous media has been a subject of active research prediction purposes. Cushman (1987) made similar
for the fast four to five decades. Field experiments show conclusions afier an in-depth analysis of the perturbation
that spatial heterogeneity is the most significant factor solutions provided by Gelhar and Axness (1983),

affecting dispersion of solutes in nataral formations sach as

aquifers (Anderson, 1979; Gelhar et al., 1985; Freyberg, The objective of this paper is to develop a computational
1986). Dagan (1988) concluded that the concentration of a model for solute transport in a saturated heterogeneous
solate can be considered as a random variable, which can porous medium by treating  velocity as a stochastic variable
be described by its statistical moments, and the expected and by providing ways to incorporate stochasticity in pore
value of concentration does not necessarily satisfy an scale diffusion. The model is developed in a manner so
advective-dispersive type equation based on the continuum that hydraulic conductivity and porosity can be either
approach; and even if the latter is satisfied, the dispersion deterministic functions or stochastic variables. The
coefficient increases with the travel time reaching an advantage of such a computationai model is that we can
asymptotic value, Cushman (1987} stated that the transport use the model to see whether we could characterise the
process in natural formations can not be modelied by the variability in the concentration field using the stochasticity
advective-dispersive  equation  because of  stochastic i velocity and pore-scale diffusion. We discuss the
{random) [uctuations in flow velocity due to natural development of the model and associated numerical
heterogeneity in the pore structure and  failure of Fick's sofutions  briefly and present a selected number of
type diffusion equation to describe the pore scale visualisations of the concentration field.

dispersion. Scale depeadence of the dispersion process has
been examained in the light of the spatial distribution of
hydraulic conductivity in many studies {Dagan, 198§,
1990). Serrano {1988} argued that small random variations
in the perturbation expansion solutions {Gelhar and
Axness, 1983) should have small variance for the
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2. STOCHASTIC VELOCITY

Since the wvelocity of a solute particle is central to
formulating a maodel of transport processes, it is important
to develop the concept of stochastic velocity to describe the
metion of a pariicle in a porous medivm. Velocity of a
tracer can be described in Cartesian coordinates by the
average Darcian velocity and a random component
accounting for unceriainty due to pore structure:

o K{x) .
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Here K is hwiraulic conductivity, @ is porosity, ¢ is
piezometric head, W is a random component in the velocity
due to pore structure, x denotes spatial coordimates and t s
time. The random part is assumed to be noise correlated in
space and S-correlated in time. This assumption atlows us
io obtain stochastic differential equations having separable
time and space, and at the same time provides a
mechanism to model irTegular variations in the system in a
realistic manner (Unany, 1989). Wix,t) is assumed to be a
Wiener process { in some literatore it is called a Brownian
process) in time and in space and it is the only stochastic
process having continuous paths as well as swationary
independent increments with zero mean (Knight, 1981).

A slochastic process W{D is a standard Wiener process if
1. W(h=D0, 2)

2. the random variables Wy, Win), .....W(t,) are n-
dimensional Gaussian processes whose parameiers are

BIwW() =0, E[W(p W)l =min (4, 4, (3}

A general Wiener process in time can be defined by using a
correlation function (4 related in time such that

B Winis0 )

min(; 4, 1

and B W) W= }fq(r)a‘r i) (5)
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A Wiener process in time and in space, W(x,U) is similarly
defined by using a correlation function gitx) related in
time and in space such that

Bl WD 1=0 (&)
and

E!W( i b V‘v"( % . [j' )1 =

mind X, L }manid, .i’ )]

J fq(’c,g‘)drdé" N

0 il

The general Wiener process, Wixte B'=LX(R)x[0,TT,
where E° is a separable Hilbert space.  Unny(1989)
illustrated a procedure to replace the Wiener process
increment in E dfi= W{x,1) ¢t, using stochastic calculus
in Hilbert space.

The Wiener process increment in a Hilbert space can be
approximated by the series

m

B, (1) = 2 e (dBt)e) (®)
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where ¢ 's are an orthonormal hasis in the Hilbert space
E° which can be taken as the eigen functions of the
correlation operator :

Oe=we )

Then the Wiener process increments can be written as,
df, (=2 e, Jo,db,(t) (10)
j=1

where db ‘s are all increments of independent standard
Wiener processes. Kumar et al. {1991) used a 4 x 4
positive definite matrix for the space correlation operator
{J to model the 2- dimensional space correlation of the
random term of a stochastic rainfall input. They have
used component values ( gy's ) of the order of 107 for their
numerical simulations with a time step of 0.1 days. In the
1-dimensional case, {or example, the correlation operator
is a 2 x 2 matrix, and the components, gy's , indicate the
degree to which the random component at x; is related to
that at x; for a given time. The standard Wienegr process
does not have a space correlation coeflicient and is entirely
time correlated through min (4, ) which can be thought of
as having a unit space correfation component gy at 4 given
point in space.

Nagurat formations are anisofropic in general, and it can be
assumed that the space correlation of the random
component in ome direction is independent of the space
correlation in another direction. If this asswmption is valid,
the correlation operator in a given direction isa 2 x 2
matrix, To illustrate the significance of the correlation
operator ({2}, let us consider paths of tracer particles
modelied by {1} in two dimensions,

When {1) is modified by replacing the velocity vector with
the tme derivative of the displacement vector and
multiplying by ds, the following equation can be obfained.

Kix)
dx = ————V@(x,0)dt + W(x,t)dt 1y
@(x}

The last term on the right hand side can be replaced by (8},
dB(t), for cach direction; then we have ordinary stochastic
differential equations for the x and y directions. These



equations can be solved numerically by using, for example,
an Eunler scheme or a Milstein scheme which are strong
Taylor approximations (Kloeden and Platen, 1994), Figure
1 shows three different realisations of y displacement of a
particle in a porous medium having a constant porosity
(0.3), a constant hydraulic conductivity ( 46.0 m/day) and
a constant piezomefric head gradient (-0.020 m/m). The
values of ¢ for all { and j were assumed o be 0.001 and
this corresponds o equal ¢ values ( 0.707 ) and equal o,
values ( 0.002) in {10). The time increment for
stmulations was 0.001 days and the simulations were run
until the distance traced by a realisation in the x direction
was 10.0 m. As shown by Figure 1, realisations of y
displacement given by (11) can be quite different from each
other,
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Figure 1: Three realisations of vy displacement of a tracer
particle given by (11} when gys are 0.001.

Al any given time t, the expected value of y displacement
is zero and the expected value of x displacement is given
by the integration of the Parcian velocity from 0 to t. The
second moments of displacements depend on (¢ and L In
these particular examples, porosity and hydraualic
conductivity are taken as constants, but they can either be
deterministic fanctions reflecting their distributions across
the spatial domain or he randomn fanctions if their changes
are highly trregular or be a combination of both. If
random functions for porosity and hydraulic conductivity
are used, means and variances have to be evalaated using
computer generated samples and the central lmit theorem.
When values of gy s are increased o 0.1, three of the
resulting realisations are given in Figwre 2 to dllustrate the
effect of the random component in 1. Note the differences
in the y displacement in Figures 1 and 2: change in QQ
produces significant changes in the realisations and this
means that particle velocity given by (1) could be used to
model the dispersion in a porous medium.
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Figure 2: Three realisations of y displacement of a tracer
particie given by (11) when g8 are 0,1,

3. A STOCHASTIC SOLUTE TRANSPORT MODEL

The formufation of a stochastic solute transport model
based on stochastic variables is briefly described here. This
formulation assumes that the solute has similar density and
viscosity to those of water; representative values of
effective  porosity and hydraslic conductivity can be
assigned to specific poinis in a specified domain using
either random or deterministic  spatially distributed
functions; piezometric head is given or can be calculated
for & specific point; and velocity at a given point is given by

(1}

For the sake of simplicity, consider a small 1-dimenstonal
cylindrical section having a cross sectional area of A and
iength 8x in the X direction, Solote flux at X=x is I, (

kg/m® day) and that at X= x+8x is J_, 5 . During a small

time duration &t,
the solute mass entering the element = I; {Ap(x)) 8, and

the solute mass leaving the element = J;. (A o(x+58%)) 8t

here J . =7 +a]” &

where J o = J, N .

the change of solute mass within the element
of

r]xA(p{x)&—(]x + 8): 5x)Aq0(x+5x)5f.

Substituting @{x+0x} = @(x) + 8¢, and simplifying ,
the change of solute mass within the element

a,

o
— Apdxdt Yy

=—J Adpdr — x

Adpéxdt .

We define the solute concentration within the element (C
(x}) as the mass of solute per unit void volume and assign
that valae to X=x for small 8x. Then the change in solute
mass within the element during 8t can be written in terms



of concentration, Change in solute mass within the element

=SCpAdX .

Therefore,
SCPAbx =
J Adwdt ——= Apdxér A Adpdvdt
Simplifying we obtain
SC_ %0 A
@55~ * dx Exq} qu)

and taking limits as 8x~0 , 8t—0 and §¢—0,

dC 7 dp  dJ, a2
O T T T
(12) can  be simplified further if we can neglect the

gradient of the effective porosity within certain regions,

For two dimensional space, for example, (12) becomes

i

a«€__, 9%
QD 6& - x

x 1
It should be noted that the fluxes, concentration and
porosity are stochastic variables. The main feature of the
model given by (13} is that it is expressed in terms of
fluxes and no assumption is made relating them to the
concentration. Further we avoided using the chain rule for
differentiation as the deterministc chain ruie is invalid
when stochastic variables are involved. Next we introduce
the concept of stochastic flux,

3.1 Stochastic Flux

It has been suggested previously that the dominant mode of
solate transfer is advection, and if the velocities are low
which is the case in aguifers, dispersion may play a
significant role giving highly “irregular”™ concentration
contours, even after considerable smoothing ( Dagan,
1990). The following model for the stochaste flux is
proposed to moded the hydrodynamic dispersion:

s=vC-(p+w]ve (14)

Here ¥ is the stochastic velocity given by (1), € is the
concentration, D is a diffusivity vecter which gives typical
values of the diffasivity for pore scale diffusion and Wy
models the random components of diffusion using a Wiener
process in Hilbert spaces. 1t should be noted that two
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different Wiener processes, W and W, , have two different
correlation coefficients. (14} gives the flexibility to
investigate the effects of advection ané diffusion separately.
It is assumed that the stochastic flux has a high level of
randomness where concentraton gradients are high. By
substituting {1} in (14), we can express the stochastic flux
in terms of velocity and concentration, and the Wiener
processes can be evaluated by using (10) at any given
instance according to the definition of the Ito integral
(Kloeden and Platen, 1994}, The resulting expression for
the stochastic flux and the conservation equation { (14) for
2 -dimensions) constitute a stochastic model for solute
transport in porous media. This model has to be solved
using pumerical schemes with appropriate boundary
conditions and initial conditi The numerical schemes
used in this research were developed and tested by the
author.

e
10,

4. COMPUTATIONAL MODELS

Computational models based on the siochastic and 3-
dimensional cases with a constant iracer concentration is
imposed on the upstream boundary for a given period of
time. As an example, the stochastic model can be written
for the l-dimensional porous medium with uniform
effective porosity, A numerical routine was developed to
solve the above stochastic partial differential equation
using (10} and the definition of Ito integral for the Wiener
processes, W and W,  Since the Wicner processes
involved are irregular, continuous, non-differentiable
processes, special routines were developed for the 1-
dimensional model which has a concentration pulse of 1.0
introduoced at the upstream boundary over % day. The
hydraulic conductivity is 46.0 m/day and the piezometric
head gradient is 0.020 m/m and the simulations were run
with qy's = 0.01 for the W Wiener processes. The
diffusivity is taken as 0.00008 m'/day and the gy s
associated with the W , Wiener process is 0.0001.
Realisations of the concentration at 0.4 day and at 1.4 day
generated from the model are shown in Figures 3 and 4,
respectively.
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Figure 3: A realisation of the concentration at 0.4 days.
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Figure 4: A realisation of the concentration at 1.4 days.

With q; ‘s = 0.1 for the W Wiener process and the same
parameters as above, two realisations at 0.4 day and at 1.4
day from the model are shown in Figure 3 and Figare 6,
respectively.
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Figure 5: A realisation of the concentration at 0.4 days.
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Figure 6: A realisation of the concentration at 1.4 days.

The effect of the correlation operator, (3, in W can be seen
from the above figures, and in general, an increase in Q
increases the shape of the concentration spread and the
noise level associated with the pulse. Increasing the gy
associated with the diffusivity ( Wy ) keeping all other
parameters unchanged will also increase the spread of the
pulse.  This indicates that the model allows us to
experiment with the relative significance of the pore-scale
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diffusion, advection, related noise terms and variations in
parameters such as hydraslic conductivity and head
gradient.

A numerical routine was developed to solve the model for
the Z-dimensional case. A realisation for a rectangular
region of 10 m x 5 m having uniform porosity of 0.3,
hydraulic conductivity of 46.0 m%*day and a uniform
pressure gradient of -0.02 m / m along the x axis is shown
in Figure 6. The axes are divided into 0.1 m divisions and
qy valwes for each directions were taken as 001 A
uniform concentration of 1.0 was applied for x=0 plane for
15 day, and the realisation shown in Figure 7 is sampied at
0.93 day.

Figure 7a: A realisation of the concentration at 0.93 days.

A contour plot of the same realisation is shown in Figure
7b. Even with a small noise introduced to the stochastic
velocity, a significant irregularity is shown in the
concentration contours of the advancing concentration
front. This situation can be further complicated by the
stochasticity introduced by hydraplic conductivity and
boundary conditions.

Figure 7h: Contour plot of concentration shown in

Figure 7a.



5. SUMMARY AND DISCUSSION

A stochastic modei based on concepis of stochastic velocity
and flux was developed; the numerical solutions were
developed to solve them for 1, 2 and 3 dimensional cases.
In this paper, we showed the influence of the correlation
operator in the Wiener process in a few situations and it
can be used to characterise hydrodynamic dispersion within
porous media. Future research will be aimed towards
conceptnal validation of the medel using simulations and
experimental data from artificial aquifers which are being
comstructed by the Lincoln Environmental at Lincoln
University, Canterbury, New Zealand. The nuinerical
solations for stochastic partial differential equations are
still at early stages of development and this work will
provide valuable contributions in that area as well. As can
he seen from this paper, even with a uniform hydranlic
condactivity, it is possible to have frregularity in
concentralion fields due to randomness in the pore
structure.  Stochastic  differential equations provide a
method of modelling  this variability; however, their
solations are computationally expensive.  With the
advancement of distributed computing, this will not be a
serious problem in solving stochastic partial differential
gquations.
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